
BlueRock AWS
CloudFormation
Deployment -
v1.2.2

BlueRock AWS CloudFormation Deployment - v1.2.2

1 of 54

BlueRock AWS
CloudFormation Deployment

The following is a guide that shows how to create and deploy a BlueRock Node
using a CloudFormation template in AWS.

Above is the architecture created by the CloudFormation Template. It contains the
following components:

Introduction

Architecture Diagram

2 of 54

• The BlueRock Node Instance. This instance and its workloads are protected by
BlueRock, it contains the following:

◦ BlueRock Rule Processing Engine: This container manages the node's policy
and collects information about the node for rule enforcement. BlueRock
policies can be configured for application and container runtime as well as
process and file level controls.

◦ Trex: Trex is an internal tool that turns simple json policy files into signed
BlueRock consumable policy files. After writing a new policy file it needs to
be processed by Trex before being uploaded to the policy bucket

◦ OTel Collector: BlueRock manages its logs using Open Telemetry Receivers,
Processors and Collectors. An intermediate collector has been placed as a
container on this instance to allow for ease of access in the log
management for this marketplace listing. All BlueRock Logs are sent through
this intermediary collector on their way to Cloudwatch.

• Additional AWS services: This template utilizes additional Amazon services for
configuration and event monitoring

◦ Amazon S3: This service is used to store signed policies in a BlueRock
Policy S3 Bucket

◦ Amazon CloudWatch: BlueRock sends events to a CloudWatch Log Group
via the OTel Collector

The following NodeInstanceTypes are supported with BlueRock. Larger instance
sizes should also be compatible, but the below list has been validated:

Installation

Prerequisites

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

3 of 54 9/6/25, 2:14 PM

The BlueRock Installation requires customers launch the BlueRock EC2 deployment
from AWS Marketplace. Free private offers can be made available upon request.

• The BlueRock Amazon Linux 2023 EC2 listing can be found here .

This CloudFormation template creates an IAM role (InstanceRole) and an
associated IAM policy (InstancePolicy). The purpose of these resources is to
grant specific permissions to an Amazon EC2 instance, allowing it to interact with
other AWS services in a secure and controlled manner.

The InstanceRole is an IAM role designed to be assumed by an Amazon EC2
instance.

t3.2xlarge
t3.xlarge
t3.large
t3.medium
t3.micro
t3.nano
t3.small
m5.2xlarge
m5.xlarge
m5.large
r5.2xlarge
r5.xlarge
r5.large
r5n.2xlarge
r5n.xlarge
r5n.large
i4i.2xlarge
i4i.xlarge
i4i.large
d3.2xlarge
d3.xlarge

IAM Role and Policy Documentation

InstanceRole

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

4 of 54 9/6/25, 2:14 PM

https://aws.amazon.com/marketplace/pp/prodview-zpxjqko6kagny
https://aws.amazon.com/marketplace/pp/prodview-zpxjqko6kagny
https://aws.amazon.com/marketplace/pp/prodview-zpxjqko6kagny

• Purpose: This role grants the EC2 instance the necessary permissions to
perform its designated tasks by allowing it to assume this role.

• Trusted Entity: The role's trust policy specifies that only the EC2 service
(ec2.amazonaws.com) can assume this role. This is a standard practice for
creating IAM roles for EC2 instances.

• Managed Policies: This role includes two AWS managed policies:

◦ arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess : This policy grants
read-only access to Amazon EC2 resources. This allows the instance to
describe EC2 resources, which can be useful for inventory or monitoring
purposes without allowing any modifications.

◦ arn:aws:iam::aws:policy/AWSMarketplaceManageSubscriptions : This
policy provides permissions to manage AWS Marketplace subscriptions.
This allows the instance to subscribe to and unsubscribe from AWS
Marketplace products.

The InstancePolicy is a custom IAM policy that grants additional, more specific
permissions to the InstanceRole .

InstancePolicy

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

5 of 54 9/6/25, 2:14 PM

• Purpose: This policy defines fine-grained permissions required by the
application running on the EC2 instance to interact with Amazon S3 and
Amazon CloudWatch Logs.

• Permissions: The policy contains the following statements:

◦ Statement 1: General Permissions

▪ s3:ListBucket : This permission allows the instance to list the objects
within an S3 bucket. This is often required to iterate through the
contents of a bucket.

▪ s3:PutObject : This permission allows the instance to upload new
objects to an S3 bucket.

▪ logs:PutLogEvents : This permission allows the instance to upload log
events to a CloudWatch Logs stream. This is essential for applications
that need to centralize their logging.

▪ Resource: The resource is set to * , which means these actions are
allowed on all resources of the respective service. While this provides
broad access, the subsequent statement narrows down the
s3:PutObject permission.

◦ Statement 2: Specific S3 Upload Permissions

▪ s3:PutObject : This part of the policy further refines the PutObject
permission. It restricts the upload of specific files to a designated S3
bucket (${PolicyBucket.Arn}). The files that can be uploaded are:

• bluerock_pub_key.pem

• config.toml

• policy.json

• policy.json.sha256

• policy.json.sig

▪ Resource: The permissions are scoped to the specific S3 bucket and
the exact file names, following the principle of least privilege by
ensuring the instance can only write these specific files to the intended
location.

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

6 of 54 9/6/25, 2:14 PM

To use this Cloud Formation template, ensure that the calling entity has the
permissions necessary to call for CAPABILITY_NAMED_IAM capabilities. Additionally,
ensure that an AWS managed ssh key is present in the region. As a parameter of
the template, a key managed by the EC2 service is needed for developers to
access the nodes. Developers should have access to the name of their key and
the private and public key files.

Through the AWS Web Console

1. Navigate to the CloudFormation Service Page

2. Select Create stack → With new resources (standard)

3. Select Choose an existing template

a. Specify template source by selecting the Upload a template file

4. Upload the BlueRock CloudFormation Template

5. Select Next

6. Fill in all template parameters (see Parameter table below)

7. Select Next

8. Under Capabilities Acknowledge the creation of IAM Roles / Policies (see
Policy Table Below)

9. Select Next

10. Confirm Stack creation and Submit

Through the AWS CLI

Make sure the CLI is installed and has privileges to specify
CAPABILITY_NAMED_IAM

Call create-stack specifying the parameter file, template file and capabilities

aws cloudformation create-stack --stack-name <string-name> --template-
body file://<template-file-location> --capabilities
CAPABILITY_NAMED_IAM --parameters file://<json-param-file-location>

Using CloudFormation

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

7 of 54 9/6/25, 2:14 PM

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Example Parameters File

CloudFormation Template Parameters

[
 {
 "ParameterKey": "AllowIp",
 "ParameterValue": "<your_ip_address>/32" or "0.0.0.0/0"
 },
 {
 "ParameterKey": "ImageId",
 "ParameterValue": <this value is predefined by region by AWS>
 },
 {
 "ParameterKey": "NodeInstanceType",
 "ParameterValue": "t3.medium"
 },
 {
 "ParameterKey": "Prefix",
 "ParameterValue": "<user-defined prefix string for provisioned
resources>"
 },
 {
 "ParameterKey": "SampleHostName",
 "ParameterValue": "<user-defined hostname identifer>"
 },
 {
 "ParameterKey": "SshKeyName",
 "ParameterValue": "<key pair for EC2 access>"
 },
]

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

8 of 54 9/6/25, 2:14 PM

This stack takes about 2-5 minutes to build.

SSH into BlueRock Instance

Once the stack has completed, select it (CloudFormation → <Stack-Name>) and
view the Resources tab. Here you can search for the NodeInstance instance.
Connect to NodeInstance via an SSH command using the key specified in
SshKeyName .

SSH Command

Check Services

The BlueRock Services are initialized through the uc-docker.service service.
Ensure that the service and the Rule Engine container are running and enabled.
Additionally, use the provided script to view the logs exported by the Rule Engine.

Parameter Name Description

AllowIp
Developer’s IP address to whitelist in the
BlueRock Instance for SSH access or
0.0.0.0/0

NodeInstanceType Size of BlueRock node to be created.

NodeAmi Specified by AWS per region

Prefix
Unique Identifier appended to AWS
resource names

SampleHostName Unique Identifier for BlueRock host name

SshKeyName
Name of AWS SSH key pair, used for
authorizing access to the BlueRock Instance

ssh -i <priv-key> ec2-user@<instance-pub-ip>

Installation Validation Checks

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

9 of 54 9/6/25, 2:14 PM

Finally, ensure the OTEL collector service is running and enabled.

To enable the enforcement of policies, BlueRock Instances need a reachable policy
file in place. In this architecture, we will load the policy file into the CF generated S3
bucket.

First we will create the signed policy file on the BlueRock Instance.

Once connected, navigate to ~/policy where a sample policy (bru_policy.json)
with all protection mechanisms set to observe mode is present. Once the policy is
modified we need to sign it using Trex.

Ensure that the bru-venv is activated when using any python commands

$sudo systemctl status uc-docker.service
$ docker ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS NAMES
5b5e00d1881f ultracontrol:latest
"/opt/bluerock/sbin/…" 7 hours ago Up 7 hours uc
e0186c875227 public.ecr.aws/aws-observability/aws-otel-
collector:latest "/awscollector --con…" 7 hours ago Up 7 hours
otel-collector

$/opt/bluerock/bin/uc-docker.sh logs

$docker logs otel-collector

$ python3 /opt/bluerock/trex/trex.py <policy-file>
$ tar xvf <policy-file>.tar

$ source /home/ec2-user/build/bru-venv/bin/activate

Policy Configuration

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

10 of 54 9/6/25, 2:14 PM

This will generate a tar file containing the new policy, the policy’s signature and a
sha256 sum of the policy. All three of these files need to be uploaded to the
BlueRock Policy Bucket.

The Services Instance also generates a new public key on creation, this key is
specified in the trex.toml file located in the policy directory. This public key
also must be uploaded to the BlueRock Policy Bucket.

These policy files take ~10 mins to propagate to each node.

Refer to the Configuring BlueRock Security Policies section for instructions on
editing and tuning policies.

Any time the policy file is updated the tar needs to be re-created and pushed to the
policy bucket.

Pushed Item Description

policy.json
Json version of buv_policy.yaml, this
includes additional configs supplied by Trex

policy.json.sig
signature file for policy.json, needed for
verifying authenticity of policy file

policy.json.sha256
sha256 sum of policy.json, needed for
verifying integrity of policy file

aws s3 sync . s3://<bluerock-cfg-s3-bucket-name> --exclude "*" --
include "policy.json*"
aws s3 cp ./bluerock_pub_key.pem s3://<bluerock-cfg-s3-bucket-name>

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

11 of 54 9/6/25, 2:14 PM

Configuring BlueRock
Security Policies
This guide will walk you through understanding and configuring security policies
for BlueRock. Policies allow you to fine-tune how the system detects and blocks
various security events and behaviors.

BlueRock policies are a set of rules defining how different security mechanisms
operate on your protected systems. Each mechanism targets different events or
attack methods, such as container drift, process execution, file access, or
language-specific protections (like Python or Java) to support both detection and
blocking of malicious actions.

Policy rules can be configured in either a detect only mode or a detect and block
mode. By customizing these policies, you can:

• Enable or disable specific security protections.

• Define whether threats are simply detected or actively remediated (blocked).

• Define the blocking mechanism - inline synchronous or asynchronous.

• Specify exceptions and allow-lists for legitimate activities.

• Tailor the sensitivity and behavior of security controls to match your
environment's needs.

The security policy is composed in a JSON file that has distinct rule sections or
“stanzas.” Each stanza configures a particular security feature. A default JSON
policy file is located in the Appendix section of this document.

For example, you'll find stanzas like:

Introduction to Policies

Policy Structure

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

12 of 54 9/6/25, 2:14 PM

• container_drift: Monitors and controls changes within running containers.

• process_exec: Controls which binaries are allowed to execute.

• sensitive_file_access: Detects or blocks unauthorized access to critical files.

• python_sensor: Provides specific protections for Python applications.

• java_sensor: Provides specific protections for Java applications.

Special Stanzas:

• common and kernel_common: These stanzas are not security mechanisms
themselves. Instead, they are used to define common configuration data (like
lists of known interpreters, web servers, or shells) that can be referenced and
used by multiple other security policy.

Below is an example of a rule for NSenter for namespace changes. This policy rule
controls whether non-system daemons can switch PID namespaces (a method for
breaking out of containers):

Most rules share a common set of configuration options that control their basic
behavior: enable, remediate and inline. Below are explanations of these rule
options.

"nsenter": {
 "enable": true,
 "remediate": true,
 "inline": true
 },

Common Configuration Options in Policy Rules

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

13 of 54 9/6/25, 2:14 PM

1. enable

• Purpose: Enables or disables the specific security detection mechanism.

• Values: true (enabled) or false (disabled).

• Default: Typically false for most mechanisms, meaning they are off by
default and you must explicitly enable them.

2. remediate

• Purpose: Determines if the mechanism should take action to block a
detected event, or if it should only be logged.

• Values: true (block asynchronously) or false (detect only). The malicious
action might briefly occur, but it is then terminated or remediated shortly
afterward.

• Note: This option is only considered if enable is set to true.

3. inline

• Purpose: Specifies if inline synchronous blocking should be applied to a
detected event.

• Values: true (enable inline blocking). The action is blocked before it can
complete. This provides the strongest protection mechanism. false:
(Asynchronous Remediation). The malicious action might briefly occur, but it
is then terminated or remediated shortly afterward.

• Note: Inline blocking is only enabled if both inline and remediate are set to
true. Some mechanisms may only operate in one mode (e.g., always inline
or always asynchronous), and this option might not be available for specific
rules.

Below is an example of a Java deserialization rule set to block inline.

"java_deserialization": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [

""
],
 "allow_list": [

""
]
 },

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

14 of 54 9/6/25, 2:14 PM

Application Runtime - Language-Specific Sensor Rules

Python Sensor: The Python Sensor supports detection and blocking capabilities for
a range of attack methods that include the following:

• Python Pickle Deserialization - Detects and/or blocks data deserialization which
can be used to pass commands and execute exploits on a given system. The
python_sensor and pickle rules configure this mechanism.

• Python Code Execution Control - Detects and/or blocks new processes being
created and executed. The python_execs rule configures this mechanism.

• Path Traversal - Detects and/or blocks attempts to navigate to alternate
directories on host using path access methods that may circumvent file
permissions. The pathtraversal rule configures this mechanism.

• Import and Load Detection - Detects and/or blocks the import of files, modules,
packages, and classes with path, version and hash information. The
python_imports rule is used to configure this mechanism. python_loads is
used to configure identification of new code imported into an existing process.

Java Sensor: The Java Sensor supports detection and blocking capabilities for a
range of attack methods that include the following:

• Java Deserialization - Detects and/or blocks data deserialization which can be
used to pass commands and execute exploits on a given system. The
java_deserialization rule configures this mechanism.

• Java Code Execution Control - Detects and/or blocks code execution
associated with deserialization or network activity. The java_exec rule
configures this mechanism.

• Network Activity Detection and Control - Detects and/or blocks threads where
network activity is associated with an active thread through a class invocation.
Uses the java_reflection rule to configure this mode. java_exec also identifies
traces of network activity.

• File Open Control - Detects and/or blocks new or anomalous file opens that may
be associated with path traversal and/or network activity. The java_file_open
rule is used to configure

Rule Type Descriptions

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

15 of 54 9/6/25, 2:14 PM

Example:

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

16 of 54 9/6/25, 2:14 PM

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

17 of 54 9/6/25, 2:14 PM

"python_sensor": {
 "enable": true,
 "pickle": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "functions_deny_list": [
 "builtins.exec",
 "posix.system",
 "socket.socket"
],
 "functions_allow_list": null
 },
 "pathtraversal": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 "/etc/passwd",
 "/etc/shadow"
]
 },
 "imports": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 ""
]
 },
 "execs": {
 "enable": true,
 "remediate": false,
 "deny_list": [
 ""
],
 "inline": true,
 "allow_list": [
 ""
]
 },
 "loads": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list_dlsym": [
 ""
],

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

18 of 54 9/6/25, 2:14 PM

],
 "deny_list_dlopen": [
 ""
],
 "deny_list_load": [
 ""
]
 },
 "urllib": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "url": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "misc": {
 "enable": true,
 "remediate": false,
 "inline": true
 }
 },
 "java_sensor": {
 "enable": true,
 "java_class_load": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "java_file_open": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 "/etc/passwd",
 "/etc/shadow"
]
 },
 "java_deserialization": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 ""
],
 "allow_list": [
 ""

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

19 of 54 9/6/25, 2:14 PM

• Process IO Bind Socket Control (Remote Shell Control): Provides a detection
and blocking mechanism to identify processes binding sockets to their standard
input/output. This method is often used by attackers to establish reverse shell
command and control over a host.

Settings:

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect).

◦ transitive: Optional method to detect transitive piping to launch other shells.

◦ explicit_deny: List specific shells or interpreters whose I/O binding you
want to block.

Example:

 ""
]
 },
 "java_exec": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "java_reflection": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "java_misc": {
 "enable": true,
 "remediate": false
 }
 }

Container Runtime Detection and Blocking Rules

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

20 of 54 9/6/25, 2:14 PM

• Forced Memory Access: This policy rule provides protection against forced
memory access. This mechanism detects and/or prevents processes from
interacting with other processes and blocks read/write access to other
processes memory address spaces. NOTE: This will prevent debuggers from
being able to attach to processes.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect).

◦ prevent_writes_only: By default, with the true setting only memory writes
are blocked. Set to false to block all memory access.

Example:

"process_io_bind_sock_control": {
 "enable": true,
 "remediate": true,
 "inline": true,
 "transitive": false,
 "explicit_deny": [
 "/sh",
 "/dash",
 "/bash",
 "/ksh",
 "/ash",
 "/zsh",
 "/python",
"/perl"
],

"forced_mem_access": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "prevent_writes_only": true
 },

Container Drift and Capabilities Policy Rules

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

21 of 54 9/6/25, 2:14 PM

• Container Drift: This rule detects and/or blocks when a binary or script is
executed within a container that did not exist in the container at container start
time.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect).

◦ container_exception_list: List of containers that are allowed to drift.

◦ pipe_process_exception_list: List of processes that can pipe info to an
interpreter.

Example:

• Container Capabilities: This rule allows you to configure which capabilities a
container object may leverage. Typical scenarios may be to enforce least
privilege and privilege escalations. The blocking mode for this rule is always
asynchronous.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ caps_denied: List capabilities that are forbidden for all containers.

◦ explicit_allow: Allow specific containers to use capabilities, even if they're
generally denied.

Example:

"container_drift": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "container_exception_list": [],
 "pipe_process_exception_list": [
 "docker-entrypoi",
 "containerd-shim",
 "bpftrace"
]
},

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

22 of 54 9/6/25, 2:14 PM

Supported Container Capabilities

System Administration

Allows setting and clearing the immutable and append-only attributes on files.
These attributes provide additional protection against file modification or deletion.

Allows loading and unloading kernel modules. This is a powerful capability that
enables dynamic modification of kernel functionality and should be granted with
extreme caution.

Allows performing raw I/O operations including accessing device memory,
modifying NUMA memory policies, and accessing PCI configuration space.

Allows using the chroot() system call to change the root directory. This capability is
essential for creating isolated filesystem environments and containers.

Allows tracing arbitrary processes using ptrace(). This capability enables
debugging tools, process monitoring, and runtime analysis of other processes.

"container_capabilities": {
 "enable": false,
 "remediate": false,
 "caps_denied": [CAP_SYS_ADMIN, CAP_KILL],
 "explicit_allow": []
},

CAP_LINUX_IMMUTABLE

CAP_SYS_MODULE

CAP_SYS_RAWIO

CAP_SYS_CHROOT

CAP_SYS_PTRACE

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

23 of 54 9/6/25, 2:14 PM

Allows configuring process accounting, which tracks resource usage and process
execution statistics for system monitoring and billing purposes.

Provides a broad range of system administration operations including mounting
filesystems, configuring swap, setting hostname, and many other privileged
operations. Often called the "new root" capability.

Allows rebooting the system and loading new kernels for later execution. This
capability provides control over system shutdown and restart operations.

Allows modifying process scheduling priorities and policies. This capability enables
changing nice values, real-time scheduling parameters, and CPU affinity settings.

Allows exceeding various system resource limits such as file size limits, process
limits, and memory limits. Provides control over resource quota enforcement.

Allows setting the system clock and real-time hardware clock. This capability is
essential for time synchronization services and system time management.

CAP_SYS_PACCT

CAP_SYS_ADMIN

CAP_SYS_BOOT

CAP_SYS_NICE

CAP_SYS_RESOURCE

CAP_SYS_TIME

CAP_SYS_TTY_CONFIG

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

24 of 54 9/6/25, 2:14 PM

Allows configuring terminal devices including setting terminal attributes,
configuring virtual consoles, and managing TTY-related operations.

File and Directory Permissions

CAP_CHOWN

Allows changing file ownership (user and group) of files and directories. This
capability enables the chown() and fchown() system calls regardless of the current
user's ownership of the file.

CAP_DAC_OVERRIDE

Bypasses file read, write, and execute permission checks. This capability allows
accessing files regardless of their permission bits, effectively overriding
discretionary access control (DAC) restrictions.

Bypasses file read permission checks and directory read and execute permission
checks. More limited than CAP_DAC_OVERRIDE as it only affects read operations
and directory traversal.

Bypasses permission checks on operations that normally require the file owner's
permissions, such as changing file permissions, setting extended attributes, or
modifying file timestamps.

Allows setting the setuid and setgid bits on files, and prevents the kernel from
clearing these bits when a file is modified. Essential for creating executable files
that run with elevated privileges.

Process and User Management

CAP_DAC_READ_SEARCH

CAP_FOWNER

CAP_FSETID

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

25 of 54 9/6/25, 2:14 PM

Allows sending signals to processes owned by other users. Without this capability,
processes can only send signals to processes with the same effective user ID.

Allows changing the group ID of the calling process and setting supplementary
group IDs. This capability is essential for processes that need to assume different
group identities.

Allows changing the user ID of the calling process. This capability enables
processes to switch between different user identities, commonly used by
authentication services and privilege-dropping applications.

Allows modifying process capabilities. This capability enables a process to grant or
remove capabilities from other processes, providing fine-grained privilege
management.

Network Operations

Allows binding to privileged ports (ports numbered less than 1024). Traditionally,
only root could bind to these well-known service ports like HTTP (80) and HTTPS
(443).

Allows making socket broadcasts and listening to multicast traffic. This capability is
required for network discovery protocols and broadcast-based communication.

CAP_KILL

CAP_SETGID

CAP_SETUID

CAP_SETPCAP

CAP_NET_BIND_SERVICE

CAP_NET_BROADCAST

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

26 of 54 9/6/25, 2:14 PM

Provides extensive network administration privileges including configuring network
interfaces, managing routing tables, setting firewall rules, and modifying network
namespaces.

Allows creating raw sockets and packet sockets. This capability is required for
network diagnostic tools, custom protocol implementations, and low-level network
programming.

Inter-Process Communication

Allows locking memory pages into RAM (preventing them from being swapped to
disk) and exceeding resource limits on memory locking operations.

Bypasses permission checks for System V IPC operations including shared
memory, semaphores, and message queues. Allows modifying IPC objects owned
by other users.

File System Operations

Allows creating special files including device files, named pipes (FIFOs), and
sockets using the mknod() system call.

CAP_NET_ADMIN

CAP_NET_RAW

CAP_IPC_LOCK

CAP_IPC_OWNER

CAP_MKNOD

CAP_LEASE

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

27 of 54 9/6/25, 2:14 PM

Allows establishing file leases, which provide notifications when other processes
attempt to open or truncate files. Used for implementing file locking and caching
mechanisms.

Security and Auditing

Allows writing records to the kernel audit log. This capability enables applications
to generate audit events for security monitoring and compliance purposes.

Allows configuring audit subsystem behavior including enabling/disabling auditing,
changing audit rules, and modifying audit configuration parameters.

Allows reading from the audit log via multicast netlink socket. This capability
enables audit log analysis tools and security monitoring applications.

Allows setting file capabilities on executable files. This capability enables the
creation of capability-aware binaries that can run with specific privileges.

Mandatory Access Control

Allows overriding Mandatory Access Control (MAC) restrictions. This capability
bypasses security policies enforced by systems like SELinux or AppArmor.

CAP_AUDIT_WRITE

CAP_AUDIT_CONTROL

CAP_AUDIT_READ

CAP_SETFCAP

CAP_MAC_OVERRIDE

CAP_MAC_ADMIN

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

28 of 54 9/6/25, 2:14 PM

Allows configuring or changing Mandatory Access Control policies. This capability
enables modification of MAC security rules and policy management.

System Logging and Power Management

Allows performing privileged syslog operations including reading from kernel
message ring buffer and controlling console log level.

Allows setting wake-up alarms that can wake the system from suspend or
hibernation states. Used by power management and scheduling applications.

Allows blocking system suspend and hibernation. This capability enables
applications to prevent the system from entering sleep states when critical
operations are running.

Advanced Capabilities

Allows using performance monitoring and observability tools including perf events,
BPF programs for performance analysis, and accessing performance counters.

Allows loading BPF (Berkeley Packet Filter) programs and creating BPF maps. This
capability enables advanced networking, tracing, and security applications.

CAP_SYSLOG

CAP_WAKE_ALARM

CAP_BLOCK_SUSPEND

CAP_PERFMON

CAP_BPF

CAP_CHECKPOINT_RESTORE

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

29 of 54 9/6/25, 2:14 PM

Allows using checkpoint/restore functionality to save and restore process state.
This capability enables container migration and process state management
features.

Security Note: These capabilities should be granted with careful consideration of
the principle of least privilege. Each capability represents significant system access
that could be misused if granted unnecessarily.

• NSEnter: Controls whether non-system daemons can switch PID namespaces
(a method for breaking out of containers).

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect).

◦ allow_list_comm: List processes that can switch namespaces.

• Container Socket Protect: Protects important files like `docker.sock` from being
accessed by container processes.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ protected_file_paths: List the socket paths you want to protect.

• Rogue Container: Identifies containers that started without your environment
knowing about them (like Kubernetes). Blocking is always asynchronous.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ allow_list_comm: List legitimate container programs that are allowed to
start.

Process and File Security Rules

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

30 of 54 9/6/25, 2:14 PM

• Process Exec: This rule specifies where programs are allowed to execute from.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ allowed_paths: List directories where executables can run.

◦ excluded_paths: List specific directories within allowed paths that are
actually forbidden.

Example:

"process_exec": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "allowed_paths": [
 "/bin/",
 "/sbin/",
 "/usr/bin/",
 "/usr/sbin/",
 "/usr/local/bin/",
 "/usr/local/sbin/",
 "/usr/lib",
 "/opt/"
],

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

31 of 54 9/6/25, 2:14 PM

• Mmap Exec File: Similar to Process Exec, but for dynamically loaded libraries.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ `allowed_paths`: List directories where libraries can be loaded from.

◦ `excluded_paths`: List specific library directories that are forbidden.

• Sensitive File Access: Flags access to sensitive files like password lists or SSH
keys.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ `absolute_paths`: List exact file paths to watch (e.g., `/etc/shadow`).

◦ `relative_paths`: List relative file paths to watch (e.g., `/.ssh/id_rsa`).

◦ `allowed_paths`: List programs that are allowed to touch these sensitive
files.

• Process Detection: Identifies suspicious programs running that may be used
for reconnaissance or exploits.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ `suspicious_list_path`: List paths to programs considered suspicious (e.g.,
`/nc`, `/wget`).

◦ `exception_list_comm`: List parent programs that can run suspicious
processes.

• Detect SetUGid: This rule only detects when programs that can escalate
privileges (like `sudo`) are run or forked. There is no blocking mode for this rule.

◦ enable: Turn detection on or off.

• Process Restriction: Catches specific programs being launched by other
restricted programs.

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

32 of 54 9/6/25, 2:14 PM

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ `process_groups`: Define which programs can't launch which other
programs.

• Socket Detection: Watches for suspicious incoming and outgoing network
connections.

◦ enable: Turn detection on or off.

◦ remediate: Turn asynchronous blocking on or off.

◦ inline: Turn synchronous blocking on or off (remediate must be set to true
for inline blocking to take effect)

◦ allow_list_addr_prefix: List allowed network address prefixes (e.g.,
`127.0.0.1`).

◦ `allow_list_comm`: List programs that are allowed to make network
connections.

Below is a default JSON policy file:

Appendix

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

33 of 54 9/6/25, 2:14 PM

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

34 of 54 9/6/25, 2:14 PM

{
 "common": {},
 "kernel_common": {
 "interpreter": {
 "/sh": [
 "c"
],
 "/dash": [
 "c"
],
 "/bash": [
 "c"
],
 "/ksh": [
 "c"
],
 "/ash": [
 "c"
],
 "/zsh": [
 "c",
 "s"
],
 "/python": [
 "c"
],
 "/perl": [
 "e",
 "E"
]
 },
 "webserver": [
 "httpd",
 "nginx",
 "lighttpd",
 "apache2"
],
 "shell": [
 "/sh",
 "/dash",
 "/bash",
 "/ksh",
 "/ash",
 "/zsh",
 "/python",
 "/perl"
],
 "nettool": [

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

35 of 54 9/6/25, 2:14 PM

 "nettool": [
 "/nc",
 "/netcat",
 "/netcat-openbsd",
 "/netcat-traditional",
 "/socat"
]
 },
 "kernel_integrity": {
 "remediate": false,
 "fileops_strict": false,
 "core_pattern_value": "",
 "modprobe_path_value": "",
 "poweroff_cmd_value": ""
 },
 "timeout": {
 "enable": false,
 "remediate": false
 },
 "userspace_force_nx_stack": {
 "enable": false
 },
 "container_drift": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "container_exception_list": [],
 "pipe_process_exception_list": [
 "docker-entrypoi",
 "containerd-shim",
 "bpftrace"
]
 },
 "process_io_bind_sock_control": {
 "enable": true,
 "remediate": true,
 "inline": true,
 "transitive": false,
 "explicit_deny": [
 "/sh",
 "/dash",
 "/bash",
 "/ksh",
 "/ash",
 "/zsh",
 "/python",
 "/perl"
],
 "allow_list_path_transitive": [

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

36 of 54 9/6/25, 2:14 PM

 "allow_list_path_transitive": [
 "/usr/lib/systemd/systemd-resolved",
 "/usr/lib/apt/methods/http",
 "/usr/lib/apt/methods/rsh",
 "/usr/lib/apt/methods/mirror",
 "/usr/bin/cri-dockerd"
]
 },
 "container_capabilities": {
 "enable": false,
 "remediate": false,
 "caps_denied": [],
 "explicit_allow": []
 },
 "nsenter": {
 "enable": true,
 "remediate": true,
 "inline": true
 },
 "container_socket_protect": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "protected_file_paths": [
 "/var/run/docker.sock"
]
 },
 "rogue_container": {
 "enable": false,
 "remediate": false
 },
 "socket_detection": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "allow_list_addr_prefix": [
 "/",
 "127.0.0.1"
],
 "allow_list_comm": [
 "sshd"
]
 },
 "process_exec": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "allowed_paths": [
 "/bin/",

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

37 of 54 9/6/25, 2:14 PM

 "/bin/",
 "/sbin/",
 "/usr/bin/",
 "/usr/sbin/",
 "/usr/local/bin/",
 "/usr/local/sbin/",
 "/usr/lib",
 "/opt/"
],
 "excluded_paths": []
 },
 "mmap_exec_file": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "allowed_paths": [
 "/lib/",
 "/lib64/",
 "/usr/lib",
 "/usr/local/lib/",
 "/usr/local/lib64/",
 "/opt/"
],
 "excluded_paths": []
 },
 "sensitive_file_access": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "absolute_paths": [
 {
 "path": "/etc/passwd",
 "write_only": true
 },
 {
 "path": "/etc/shadow",
 "write_only": false
 }
],
 "relative_paths": [
 {
 "path": "/.ssh/id_rsa",
 "write_only": false
 },
 {
 "path": "/.ssh/id_ecdsa",
 "write_only": false
 },
 {

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

38 of 54 9/6/25, 2:14 PM

 "path": "/.ssh/id_ecdsa_sk",
 "write_only": false
 },
 {
 "path": "/.ssh/id_ed25519",
 "write_only": false
 },
 {
 "path": "/.ssh/id_ed25519_sk",
 "write_only": false
 }
],
 "allowed_paths": [
 "/usr/sbin/unix_chkpwd",
 "/usr/lib/systemd/systemd-userwork"
]
 },
 "process_detection": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "suspicious_list_path": [
 "/nc",
 "/wget",
 "/curl"
],
 "exception_list_comm": [
 "setup-policy-ro"
]
 },
 "detect_setugid": {
 "enable": false
 },
 "process_restriction": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "process_groups": [
 {
 "restricted": [
 "httpd",
 "nginx",
 "lighttpd",
 "apache2"
],
 "executable": [
 "/nc",
 "/netcat",

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

39 of 54 9/6/25, 2:14 PM

 "/netcat-openbsd",
 "/netcat-traditional",
 "/socat"
]
 },
 {
 "restricted": [
 "httpd",
 "nginx",
 "lighttpd",
 "apache2"
],
 "executable": [
 "/sh",
 "/dash",
 "/bash",
 "/ksh",
 "/ash",
 "/zsh",
 "/python",
 "/perl"
]
 }
]
 },
 "forced_mem_access": {
 "enable": false,
 "remediate": false,
 "inline": true,
 "prevent_writes_only": true
 },
 "python_sensor": {
 "enable": true,
 "pickle": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "functions_deny_list": [
 "builtins.exec",
 "posix.system",
 "socket.socket"
],
 "functions_allow_list": null
 },
 "pathtraversal": {
 "enable": true,
 "remediate": false,
 "inline": true,

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

40 of 54 9/6/25, 2:14 PM

 "deny_list": [
 "/etc/passwd",
 "/etc/shadow"
]
 },
 "imports": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 ""
]
 },
 "execs": {
 "enable": true,
 "remediate": false,
 "deny_list": [
 ""
],
 "inline": true,
 "allow_list": [
 ""
]
 },
 "loads": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list_dlsym": [
 ""
],
 "deny_list_dlopen": [
 ""
],
 "deny_list_load": [
 ""
]
 },
 "urllib": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "url": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "misc": {

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

41 of 54 9/6/25, 2:14 PM

 "misc": {
 "enable": true,
 "remediate": false,
 "inline": true
 }
 },
 "java_sensor": {
 "enable": true,
 "java_class_load": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "java_file_open": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 "/etc/passwd",
 "/etc/shadow"
]
 },
 "java_deserialization": {
 "enable": true,
 "remediate": false,
 "inline": true,
 "deny_list": [
 ""
],
 "allow_list": [
 ""
]
 },
 "java_exec": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "java_reflection": {
 "enable": true,
 "remediate": false,
 "inline": true
 },
 "java_misc": {
 "enable": true,
 "remediate": false
 }
 }
}

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

42 of 54 9/6/25, 2:14 PM

}

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

43 of 54 9/6/25, 2:14 PM

Testing BlueRock Policies
Once a policy file has been uploaded, you can test the policies using the examples
below:

Ensure the nsenter stanza in the policy file matches the following:

Then on the BlueRock Node, attempt to move laterally from one namespace to
another. You can run the following script on the node to test this capability:

 "nsenter": {
 "enable": true,
 "remediate": true,
 "inline": true
 },

569B
nsenter_test.sh

$./nsenter_test.sh
Spinning up test webserver container
[+] Running 2/2
 ✔ Network tmp_default Created
0.2s
 ✔ Container websever Started
0.7s
[...] Press ENTER to attempt to enter container Namespace with nsenter
nsenter: reassociate to namespace 'ns/pid' failed: Operation not
permitted
Spinning down test webserver container
[+] Running 2/2
 ✔ Container websever Removed
0.4s
 ✔ Network tmp_default Removed

nsenter Protection

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

44 of 54 9/6/25, 2:14 PM

https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5
https://1983702018-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FCNnVnPvaRpvlLmPT6IAN%2Fuploads%2FBGGbzgsJVVVlyR6BGyuQ%2Fnsenter_test.sh?alt=media&token=53944d1c-f5a1-4ede-8af4-6d37dd7b4de5

Then navigate to the CloudWatch log group and use the filter to search for ERROR
logs:

The following log should appear

Use the $.attributes.meta.source_event_id field to collect more information
about the incident

{ $.severity_text = "ERROR" }

{
 "severity_number": 17,
 "severity_text": "ERROR",
 "attributes": {
 "event": {
 "description": "'/usr/bin/nsenter' tries to nsenter",
 "name": "nsenter_violation",
 "source_event_id": 420
 },
 "hostid": "bru-host",
 "meta": {
 "cpu_id": 2,
 "name": "namespace_change",
 "source_event_id": 420,
 "type": "remediation"
 }
 }
}

{ $.attributes.meta.source_event_id = 420 ||
$.attributes.event.source_event_id = 420 }

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

45 of 54 9/6/25, 2:14 PM

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

46 of 54 9/6/25, 2:14 PM

{
 "severity_number": 9,
 "severity_text": "INFO",
 "attributes": {
 "comm": "nsenter",
 "context": {
 "cgroup": {
 "cgroup_id": 29086,
 "cgroup_name": "/user.slice/user-1000.slice/
session-15.scope"
 },
 "namespace": {
 "cgroup_ns_inum": 4026532303,
 "ipc_ns_inum": 4026532301,
 "mnt_ns_inum": 4026531841,
 "net_ns_inum": 4026532304,
 "pid_for_children_ns_inum": 4026531836,
 "pid_ns_inum": 4026531836,
 "time_for_children_ns_inum": 4026531834,
 "time_ns_inum": 4026531834,
 "user_ns_inum": 4026531837,
 "uts_ns_inum": 4026532300
 },
 "parent_process": {
 "comm": "sudo",
 "pid": 36257
 },
 "process": {
 "comm": "nsenter",
 "effective_capability": 2199023255551,
 "egid": 0,
 "euid": 0,
 "file_path": "/usr/bin/nsenter",
 "gid": 0,
 "permitted_capability": 2199023255551,
 "pid": 36258,
 "sys_daemon": false,
 "uid": 0
 }
 },
 "hostid": "bru-host",
 "meta": {
 "cpu_id": 2,
 "name": "namespace_change",
 "source_event_id": 420,
 "type": "event"
 },
 "namespace": {

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

47 of 54 9/6/25, 2:14 PM

Review the following stanza

This policy denies every container the ability to use the CAP_CHOWN capability,
blocking any change of owners for files in the container. We will spin up a container
and attempt to alter the permissions of a file. Even though the container has the
permission to use CAP_CHOWN , BlueRock blocks the attempt

 "namespace": {
 "cgroup_ns_inum": 4026532303,
 "ipc_ns_inum": 4026532301,
 "mnt_ns_inum": 4026531841,
 "net_ns_inum": 4026532304,
 "pid_for_children_ns_inum": 4026532302,
 "pid_ns_inum": 4026531836,
 "time_for_children_ns_inum": 4026531834,
 "time_ns_inum": 4026531834,
 "user_ns_inum": 4026531837,
 "uts_ns_inum": 4026532300
 },
 "pid": 36258
 }
}

 "container_capabilities": {
 "enable": true,
 "remediate": true,
 "caps_denied": ["CAP_CHOWN"],
 "explicit_allow": []
 },

Capability Protection

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

48 of 54 9/6/25, 2:14 PM

Copy the above script onto a BlueRock node with the policy stanza above and run it
to see the following

#!/bin/bash
echo "Spinning up capability container"
COMPOSE_FILE=$(mktemp)

cat > "$COMPOSE_FILE" <<EOF
services:
 trusted_file_access:
 image: alpine
 container_name: cap_test
 cap_add:
 - CHOWN
 - DAC_OVERRIDE
 - DAC_READ_SEARCH
 - FOWNER
 - FSETID
 command: sh -c "sleep infinity"
EOF
docker-compose -f "$COMPOSE_FILE" up -d
read -p "[...] Press ENTER to attempt to enter use a prohibited
container capability"
docker exec cap_test sh -c "touch /tmp/test && chown 1000:1000 /tmp/
test"
echo "Spinning down cap test container"
docker-compose -f "$COMPOSE_FILE" down
rm -f "$COMPOSE_FILE"

./cap_test.sh
Spinning up capability container
[+] Running 2/2
 ✔ Network tmp_default Created
0.2s
 ✔ Container cap_test Started
0.4s
[...] Press ENTER to attempt to enter use a prohibited container
capability
Spinning down cap test container
[+] Running 2/2
 ✔ Container cap_test Removed
10.3s
 ✔ Network tmp_default Removed

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

49 of 54 9/6/25, 2:14 PM

Then using the filters above you can find the following logs in CloudWatch

And the additional context

{
 "body": {
 "event.domain": "gyro",
 "event.id": 274,
 "event.name": "capable_violation",
 "event.type": "remediation",
 "hostid": "bru-single",
 "meta": {
 "description": "Container
'f2129b2302e09398476e6ed5d79aa87598e344535fbcb71b106603bd6fbfe46f' is
trying to use capability 'CAP_CHOWN'",
 "name": "capable_violation",
 "sensor_id": 8825,
 "source_event_id": 274
 }
 },
 "severity_number": 17,
 "severity_text": "ERROR",
 "attributes": {
 "event.domain": "gyro",
 "event.id": 274,
 "event.name": "capable_violation",
 "event.type": "remediation",
 "hostid": "bru-single",
 "meta": {
 "description": "Container
'f2129b2302e09398476e6ed5d79aa87598e344535fbcb71b106603bd6fbfe46f' is
trying to use capability 'CAP_CHOWN'",
 "name": "capable_violation",
 "sensor_id": 8825,
 "source_event_id": 274
 }
 }
}

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

50 of 54 9/6/25, 2:14 PM

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

51 of 54 9/6/25, 2:14 PM

{
 "body": {
 "aux": {
 "container_metadata": {
 "container":
"f2129b2302e09398476e6ed5d79aa87598e344535fbcb71b106603bd6fbfe46f"
 }
 },
 "cap_name": "CAP_CHOWN",
 "cap_num": 0,
 "context": {
 "cgroup": {
 "cgroup_id": 13892,
 "cgroup_name": "/system.slice/docker-
f2129b2302e09398476e6ed5d79aa87598e344535fbcb71b106603bd6fbfe46f.scope"
 },
 "namespace": {
 "cgroup_ns_inum": 4026532368,
 "ipc_ns_inum": 4026532366,
 "mnt_ns_inum": 4026532364,
 "net_ns_inum": 4026532369,
 "pid_for_children_ns_inum": 4026532367,
 "pid_ns_inum": 4026532367,
 "time_for_children_ns_inum": 4026531834,
 "time_ns_inum": 4026531834,
 "user_ns_inum": 4026531837,
 "uts_ns_inum": 4026532365
 },
 "parent_process": {
 "comm": "containerd-shim",
 "pid": 11885
 },
 "process": {
 "comm": "chown",
 "effective_capability": 2818844159,
 "egid": 0,
 "euid": 0,
 "file_path": "/bin/busybox",
 "gid": 0,
 "permitted_capability": 2818844159,
 "pid": 11960,
 "sys_daemon": false,
 "uid": 0
 }
 },
 "event.domain": "sensor",
 "event.id": 274,
 "event.name": "capable",

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

52 of 54 9/6/25, 2:14 PM

 "event.name": "capable",
 "event.type": "event",
 "hostid": "bru-single",
 "meta": {
 "domain": "sensor",
 "name": "capable",
 "sensor_id": 8825,
 "source_event_id": 274,
 "type": "event"
 }
 },
 "severity_number": 9,
 "severity_text": "INFO",
 "attributes": {
 "aux": {
 "container_metadata": {
 "container":
"f2129b2302e09398476e6ed5d79aa87598e344535fbcb71b106603bd6fbfe46f"
 }
 },
 "cap_name": "CAP_CHOWN",
 "cap_num": 0,
 "context": {
 "cgroup": {
 "cgroup_id": 13892,
 "cgroup_name": "/system.slice/docker-
f2129b2302e09398476e6ed5d79aa87598e344535fbcb71b106603bd6fbfe46f.scope"
 },
 "namespace": {
 "cgroup_ns_inum": 4026532368,
 "ipc_ns_inum": 4026532366,
 "mnt_ns_inum": 4026532364,
 "net_ns_inum": 4026532369,
 "pid_for_children_ns_inum": 4026532367,
 "pid_ns_inum": 4026532367,
 "time_for_children_ns_inum": 4026531834,
 "time_ns_inum": 4026531834,
 "user_ns_inum": 4026531837,
 "uts_ns_inum": 4026532365
 },
 "parent_process": {
 "comm": "containerd-shim",
 "pid": 11885
 },
 "process": {
 "comm": "chown",
 "effective_capability": 2818844159,
 "egid": 0,
 "euid": 0,

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

53 of 54 9/6/25, 2:14 PM

 "euid": 0,
 "file_path": "/bin/busybox",
 "gid": 0,
 "permitted_capability": 2818844159,
 "pid": 11960,
 "sys_daemon": false,
 "uid": 0
 }
 },
 "event.domain": "sensor",
 "event.id": 274,
 "event.name": "capable",
 "event.type": "event",
 "hostid": "bru-single",
 "meta": {
 "domain": "sensor",
 "name": "capable",
 "sensor_id": 8825,
 "source_event_id": 274,
 "type": "event"
 }
 }
}

BlueRock AWS CloudFormation Deployment - v1.2 https://open-2c.gitbook.com/~space/CNnVnPvaRpvlLmPT6IAN/~gi...

54 of 54 9/6/25, 2:14 PM

